
THEORY OF FRONTAL ISOTHERMAL DYNAMICS OF SORPTiON 

FOR ANY CONVEX OR CONCAVE ISOTHERM 

A. I. Kalinichev UDC 541.183 

Approximate analytic solutions are obtained for the equations of equilibrium or non- 
equilibrium dynamics of sorption in the case of arbitrary convex or concave iso- 
therms. 

The isotherm sorption dynamics in a porous and nondeformable medium are described by the 
material-balance equation in which lengthwise diffusion is taken into account~ 

Oa Oc Oc = O ~c__ (1) 
o--F + "  0-7 ~ 

and also by an equation which expresses the relation between the concentrations a and c. In 
the case of equilibrium dynamics one has a = f(c) and in the case of nonequilibrium their in- 
terrelation is given by the kinetics equation in which the lack of equilibrium of the sorp- 
tion process is expressed with the aid of the parameter l, the retardation path [I]: 

= : ( c ) - l  i l L .  . 
dc Ox (2) 

The initial and boundary conditions for the equations of sorption frontal dynamics for a 
half-bounded column (0~x < =) are given by 

c(O, t )= 1; c(x ,  o)=c(oo, t )=o.  (3) 

The solution of the system (i)-(3) depends on the shape of the sorption isotherm. For 
a linear isotherm 7c analytic solutions were obtained [2, 3]. In the case of a nonlinear 
isotherm Eqs. (i) and (2) are also nonlinear, their solution giving rise to considerable dif- 
ficulties of a mathematical nature. For convex or concave isotherms with only a slight de- 
viation from linearity an approximate solution was obtained in [4] as well as statistical 
moments of the concentration curve [5, 6] which enable one to find estimates for the sorp- 
tion front erosion when it is in motion in the column. An approximate solution of the equa- 
tions of the equilibrium frontal dynamics of sorption was obtained in [7] for rectangular 
convex isotherms. 

In the present article a distribution for the sorption front of concentration is assumed, 
with whose aid an approximate solution c(x, t) of the system (1)-(3) is found in the case of 
any convex or concave isotherm including the cases of large deviations from linearity. This 
distribution was also employed to solve the equations of equilibrium dynamics in the case of 
lengthwise diffusion D or of nonequilibrium dynamics for D = 0. 

The system (i) and (2) is given by 

Of(c) + Oc Oc _ ~ c  . u~t ux  ~- 
-~x + ~  0N a , z =  ~;O ~ =  ~D (4) 

in the case of equilibrium dynamics and when the dimensionless time r and the coordinates n 
are used. To solve the nonlinear equation (4) the integral-relations method [8] is used with 
such a modification that instead of a mobile boundary for the zero concentration one uses the 
mobile boundary xo(t) or 6(T) = uxo/D for the concentration c = io The concentration distri- 
bution at the front is determined by the relations 

~ c =  1; ~ , < o %  c=exp{--[b01--~)]~}. (5) 

The slope of the concentration curve in (5) at any point ~ > ~ is given by the coefficient 
b(T) and by the mobile boundary ~(T) both being time-dependent. The profile of the concentra- 
tion c can be regarded as an integral function of the random quantity ~~ Then the probability 
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density of this distribution is given by--~c/8~ [5, 6, 9]. The width (standard deviation) 
and the location of the center of gravity of the decreasing portion of the concentration 

curve c in (5) are determined by the statistical moments for the curve --~c/~q: 

- - -  a n =  , 

6 

To d e t e r m i n e  t he  f u n c t i o n s  b(x)  and ~(x) i t  i s  r e q u i r e d  t h a t  t he  d i s t r i b u t i o n  (5) s a t i s -  
f i e s  two integral relations (of the zeroth and of the first order) which express the law of 
mass conservation. The integral relation of the n-th order is obtained from (4) by multi- 
plying both sides of the equation by ~n and integrating subsequently with respect to q from 
6 to ~: 

n=0; ~-~d ~[ (a+c)dn+[l+f(1)l  dSd_~_ = I, (7) 
8 

n=t; --~- n(a+c)dn+[l*f(1)l 8a8 
' dx 

8 

(7) and (8) are solved separately for polynomial convex or concave isotherms, Equations 

f (c) = vc + %8tc m. (9 )  

By integrating (7) and using (9) one obtains 

~/T x'--(l +e) 8 T' x , e Vi~' (i0) 
2b 1 + e / V ~  1 + V 1 + ? 

Employing in the evaluation of the integrals in (8) the distribution (5) and the isotherm 
equation (9) and eliminatingh(T) with the aid of (i0) one obtains from the ordinary differen- 
tial equation for the function 8(T), 

d6 1 + rx' + s8 (ii) 

dx' rix' + si6 
1 + ~  [ 4  l + ~ / m  ] 

s = - - ( l + e )  r =  l q - e  ~ m  n " lq -e /~ fm 1 , 

Sl=--(l+e) rl=(l+e)[ 4 (l + ") (l -[- e/m) ] ~  (! +e/V'm) z -- 1 . 

Integrating (ii) together with ~(0) = 0 yields the transcendental relation, 

�9 (12) y - - l n l l  + y l - - - ~ r ' ,  

y,__ ~(l--1/Vm) h'--(1 +~)81. (13) 
(1 + ~) (1 + 8/~m) 

The s o l u t i o n  (5) where b and ~ a r e  g iven  by (10) ,  (12) ,  and (13) i s  a p p l i c a b l e  to  i so the rms  
of any curvature ~. Should the approximation accuracy of an isotherm as given by (9) be in- 
sufficient one can introduce more terms in (9) or modify the degree m of the polynomial. It 
can easily be seen that this does not change the form of the solution (5) or of the relations 
for b(x), 8(z); the only change is in the constants k, r m which appear in the relations 
(I0), (12), and (13). The latter is also true in the case of the Freundlich isotherm ~ = O, 
y,e, > 0 in (9). 

For a linear isotherm (~ = O) the parameters b and ~ satisfy the relations 

1 = 2  V 2x' ~ = x ,  . V 2x' (14) 
b 4 - - ~  ' __4 _ 1 
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Fig. 1. Front of the concentration c 
in the case of concave (i) or linear 
(2) or convex (3) isotherm at the in- 
stant �9 ' = i00: i) e = 0.i; 2) e = 
O; 3) e = -0.i; c, ~, r, e are di- 
mensionless quantities. 

At the initial stage of the front motion when [y(x)[  <<i, r '  <<i/2k one obtains from 
(12), (13), (i0) 

= 2kx', 1 /~  (1 + e) y _ (1 + e) V-2-k7 
2--~= e (1 - -1 / ] / -~ )  -- e ( l - - 1 / V ~ )  (15) 

by employing the series expansion inll + YI" In accordance with (14) and (15) one finds 
from (6) that at the initial stage of motion the front width o~i/b increases proportional- 
ly to /t both for linear and for convex or concave isotherms. 

It is known [I] that there exists an asymptotic (t § =) solution for convex isotherms, 
this being the stationary state of the front motion when the function c only depends on the 
single variable z. Employing (12) one can easily find the steady time Tst of the state: 

e > O ,  m < l  or e < O , m > l ,  l i m y = - - l ,  

lira c (~, x) = c (z) = exp [--(bz)Z], ( 1 6 )  

x' 1 + e/V'm 
z = ~  + 

With the error not exceeding 1% 
constant for T' > ' where Tst 

(Yst = --0.99) the front width ~ ~ ]Yl (6), (i0) becomes 

3.6 "rst 1 + e/V'm 
�9 --__ ~St~ %t = k ' 1 + e e(1 --I/~m) (17) 

The estimates (17) agree with those obtained in [4-6, 9] for convex isotherms y(c + exc 2) of 
low curvature ]e I << i. However, the estimates (17) can also be applied in the case of iso- 
therms of high curvature, for example, 

m = 2 ,  y = y i ;  e = - - 0 . 5  %'t=4.2,  6s t=4 .8 ;  

e = - - O . 4  "rst= 15, 8st=19.  
In the case of convex isotherms the sorption front gets progressively eroded. 

from (12), (6) that for long times, ~' ~ 100/k when y~100>> in[l + Yl, one has 

e>O, m>l or e<O, r e < l ,  (19) 

/ 4 (1+ e) kx' 
y=k ' r ' ,  o =  ~/ - - - - I  

z e(1 --l/V-m) 

isotherms for T' ~ 100/k the width of the sorption front Consequently, in the case of concave 
grows proportionally to t (19). 

The estimation of the error in the approximate solution (5), (I0), 
out by comparing it with a known solution for a linear isotherm [2], 

(18) 

It follows 

(12), (13) is carried 

e = O ,  C(~l, ~ )=  ~ erfc 2V------~ +exp(N) er[c 2V----~ ' (20) 
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Fig. 2. Fronts of the concentration c 
for convex isotherms in the stationary 
state: I) 3' = !0, E =--0.5; 2) 3' = 
1800, g = --0. i; c, n, 3, r are dimen- 
sionless quantities. 

c (,1, = 

and also with the solution for isotherms of the type (9) (y = YI, m = 2) of low nonlinearity, 
[El << i [4]. The solution in [4] was obtained with the aid of an integral transformation of 
the function c which transforms a nonlinear problem intoa linear one for another function. 
Using the notation given in that article the solution of [4] can be written as 

exp (el--~-e)eric 1 + p /h )  

, ( + )  2 + e x p  ep erfc 2 (g + p / h ) - e r f c  i 
2 - - g  

T' eh 
P=~l  , h--V-}V(1-Fe), g - -  

l~,-e l + s  

(21) 

In Fig. I the solid lines correspond to the concentration fronts at an arbitrary time 
instant as evaluated for a linear isotherm by using the formula (20) (curve 2), and for low- 
curvature (m = 2, g = • I) isotherms by using the formula (21) (curves I, 3). If one com- 
pares them with the corresponding curves (dashed) evaluated by using (5), (i0), (12), (13), a 
good agreement is observed for linear isotherms or isotherms with slight nonlinearity. One 
notes that the stationary state of the motion in the case of a convex isotherm (e =--0.i) 

' = 860 (17). prior to this instant has yet to be attained: E =--0.i~ rst 

An error estimate for the obtained solution in the case of isotherms with strong devia- 
tion from linearity can be found by comparing it with the solution of Eq. (4) for long times 
when the stationary state occurs: 

Oc dc Oc 1 dc 

@~ dz ' @T (1-~-v)(l+Q dz (22) 

m = 2 ,  V=Yl,  ~ < 0 ,  l n c - - l n I l - - c l =  sZ~+K. 
1+~ 

A stationary state is attained for ~ = --0.5, T' ~ 4.2; e = --0.i, T' ~ 860 [(17), (18)]. In 
Fig. 2 the solid lines represent the profiles of the concentration c evaluated with the aid 
of (22) and the dashed lines those evaluated with the aid of (5), (10),(12), (13). The agreement 
is good both in the case of isotherms of pronounced (c = --0.5) and weak (s = --0. I) nonlinearity. 

For solving the system of equations for nonequilibrium frontal dynamics of sorption with 
D = 0 one substitutes (2) in (i) and the obtained solution is written in the dimensionless 
time 3 = ut/l and dimensionless coordinate ~ = x/~: 

Of (c) + ---0c ~f  (c) = Oc 
0~ ox + 0~0~ O~ (23) 

Integral relations can be obtained from (23) by the procedure described above. For y >> i 
(this being an important case in applications) the equations for b(3) and 6(3) derived from 
the integral relations are of the form (i0), (12), (13), in the case under consideration of 
nonequilibrium dynamics, the only difference being that now the coordinate and time are ex- 
pressed not in the units D/u, But in the units of l; all the previous results or estimates 
are now applicable to the case of frontal nonequilibrium dynamics of sorption without being 
modified. 
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NOTATION 

c, dimensionless (in inlet concentration units) concentration of sorbed gas or liquid 
in mobile phase; a, dimensionless (in inlet concentration units) concentration of matter in 
sorbent per unit volume of the mobile phase; f(c), isotherm equation of sorption; x, coor- 
dinate; N, dimensionless coordinate; t, time; r~ Tw, dimensionless times; u~ mean flow ve- 
locity; D~ lengthwise diffusion coefficient; l, kinetic parameter--retardation path~ y, Henry 
coefficient; e, isotherm nonlinearity parameter; m, exponent; Xo(t), mobile boundary of con- 
centration c = i~ ~(T), dimensionless mobile boundary of concentration c = i; K, constant. 
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AN APPROXIMATE MATHEMATICAL MODEL OF HEAT AND MASS 

TRANSFER IN TWO-PHASE FLOW 

T. Blikle and T. Vaida UDC 533.72 

We propose an approximate method for studying transport processes in one-dimensional 
two-phase flow which permits the determination of the system output as a function of 
input and the system parameters. The error of the method is estimated. 

A mathematical description of transport processes in steady two-phase flows characterized 
both by mixing and the presence of arbitrary sources whose strengths depend only on the po- 
tentials of the entities being transported is important for the chemical industry. For sim- 
plicity we consider only one-dimensional flows. It is known that such a description cannot 
generally be given in exact closed analytic form even for one-phase systems. There is evi- 
dence, however, that for a certain heuristic reinterpretation of the differential equation 
to be solved and its boundary conditions, an approximate method of describing the system 
analytically can be constructed [i]. 

In the present paper we investigate such a method in a general form suitable for a math- 
ematical description of two-phase heat and ma~s transfer. The proposed method can be used 
not only for an approximate analytic study of heat and mass transfer in two interacting phases, 
but also for an approximate study of heat- and mass-transfer processes taking place simul- 
taneously in a single phase. In addition, this method can in principle be generalized to in- 
clude an arbitrary number of equations. There then arises the problem of comparing the ap- 
proximate and exact results. In this paper we restrict ourselves to the most important prac- 
tical case of two equations. 

It is known [2] that transport processes in the systems under consideration can be de- 
scribed in the usual approximation by the equations 

- -  F YF d~u du [. 
ix,----r- + V --ax* - -  (u, u ' )  = O, ( 1 )  
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